

SINS: Synchrotron Infrared Nano Spectroscopy

SYNCHROTRON INFRARED BEAMLINES

Markus Raschke (University of Colorado at Boulder) Robert Johns and Delia Milliron (UT Austin) Elad Gross (Hebrew University of Jerusalem) F. Toste (UC Berkeley) Stephanie Gilbert Corder and Mengkun Liu (Stony Brook University) Tiger Tao (UT Austin)

Michael C. Martin Hans A. Bechtel Omar Khatib Advanced Light Source, LBNL G. Larry Carr NSLS-II, BNL

NERGY

LAWRENCE BERKELEY NATIONAL LABORAT

Synchrotron Light Sources

Synchrotron Light Sources

ALS Beamlines

Synchrotrons make IR too!

Bend magnets: The ultimate broadband source

Why use infrared at a synchrotron?

Synchrotron IR is 1000x *brighter* than a conventional blackbody source

From deep oceans to outer space...

Nature Physics, 10, 743 (2014) Nature Nanotech., 6, 630 (2011) Nature, 471, 617 (2011)

Science, 330, 204 (2010)

Anal. Chem, 82, 8757 (2010)

Anal. Chem, 86, 521 (2014)

Science, 314, 1728 (2006) Science 345, 786 (2014)

IR's wavelength problem: the diffraction limit

Beyond the diffraction limit

Scattering-type scanning near-field optical microscopy (s-SNOM)

Advantages

- Nanometer spatial resolution
- Wavelength independent
- Soft and hard matter
- Amplitude and phase of optical field

Muller, Pollard & Raschke, *J. Phys. Chem. Lett.*, 6 1275 (2015) Huth, et al., *Nano Lett.* 13 1065 (2013)

Broadband sources for IR s-SNOM

Broadband sources

- More efficient spectral collection
- Improved spectral accuracy

Synchrotron IR

- Ultra-broadband
- High spectral irradiance
- Spatially coherent
- Good spectral stability

SINS: Synchrotron Infrared Nano Spectroscopy

BERKELEY L

Bechtel, Muller, Olmon, Martin, Raschke, PNAS, 111, 7191 (2014)

Open for Users! Free to use!

Beamline 5.4

Beamline 2.4

Applications

Catalysis

Nanoparticles

Plasmons / Polaritons

Biominerals

Proteins

Biofilms

Mapping Catalytic Reactions on Single Nano-Particles

Wu, Wolf, Levartovsky, Bechtel, Martin, Toste & Gross, Nature 541, 511–515 (2017)

BERKELEY LAB

Shale: Hyperspectral Imaging

Topography

1140 cm⁻¹

Z. Hao, H. A. Bechtel, T. Kneafsey, B. Gilbert, P. Nico, Scientific Reports 8, 2552 (2018).

Shale: Hyperspectral Imaging

Z. Hao, H. A. Bechtel, T. Kneafsey, B. Gilbert, P. Nico, *Scientific Reports* **8**, 2552 (2018).

Domain Orientation in Molecular Materials

Perylene tetracarboxylic dianhydride (PTCDA)

Muller et al., Science Advances 2, e1601006 (2016)

Optical Nanocrystallography

Intensity of C-H out-of-plane bend *vs.* C=O in-plane stretch → orientation

Muller et al., Science Advances 2, e1601006 (2016)

SINS in the Far-IR

Omar Khatib, Bechtel, Matin, Raschke, Carr, ACS Photonics (2018), DOI: 10.1021/acsphotonics.8b00565

ALS Beamline 2.4

SINS in the Far-IR

BERKELEY LAB

Omar Khatib, Bechtel, Matin, Raschke, Carr, ACS Photonics (2018), DOI: 10.1021/acsphotonics.8b00565

ALS

Polariton Interferometry

Chen et al. Nature 487, 77-81 (2012)

Fei et al. Nature 487, 82-85 (2012)

The Phonons of Boron Nitride

Phonon Polaritons in Boron Nitride

Shi, Bechtel, Berweger, Sun, Zeng, Jin, Chang, Martin, Raschke, Wang, ACS Photonics, 2, 790 (2015).

hBN Spectral Cuts

Shi, Bechtel, Berweger, Sun, Zeng, Jin, Chang, Martin, Raschke, Wang, ACS Photonics, 2, 790 (2015).

Nano-spectroscopy of graphene gated device Far-IR surface plasmon

25

BERKELEY LAB

Strain-induced phase transitions in VO₂ films

 VO_2 phonon at ~540 cm⁻¹ redshifts with increasing strain

Imaging & Spectroscopy of Patterned VO₂

Gilbert Corder, Jiang, Chen, Kittiwatanakul, Tung, Zhu, Zhang, Bechtel, Martin, Carr, Lu, Wolf, Wen, Tao, and Mengkun Liu, Phys. Rev. B **96**, 161110(R) (2017)

(UP) unpatterned (UE) unetched-substrate patterned (EP) etched-substrate patterned regions

BERKELEY LAB

Cryo SINS? UHV SINS? Matches far-IR science ...

Plus beautiful work by Basov Group and Eng Group

Nano Infrared is Revolutionizing synchrotron IR science

Visits from IR Beamline Scientists Australian Synchrotron NSLS II LNLS (Brazil) Max-Lab (Sweden) Soleil (France) Spring-8 (Japan) Elettra (Italy) Diamond (England) Shanghai Synchrotron (China) Pohang Light Source (South Korea)

SINS at other synchrotrons MLS (Germany) LNLS (Brazil)

Spring-8 (Japan) under development Soleil (France) under development Pohang (Korea) under development NSLS II - proposed

ALS

SINS as a complementary tool

Acknowledgements

Funding ALS BSISB DOE BES DOE BER Development Hans Bechtel Markus Raschke Omar Khatib Larry Carr Rob Olmon Eric Muller

Users & samples in this talk Stephanie Gilbert Corder, Mengkun Liu Tiger Tao, Dimitri Basov Hoi-Ying Holman Zhao Hao, Peter Nico Gabor Somorjai, Elad Gross, Dean Toste

Office of Science

