Topological terms in sigma models on homogeneous spaces

Joe Davighi, University of Cambridge

1803.07585 (JHEP 1809), and 1808.04154 with Ben Gripaios

University of Stavanger, November 22 2018

・ロト・日本・モート モー うへぐ

Outline of talk

- 1. Overview & motivation
- 2. Why singular homology?
- 3. Classification in two parts: Aharonov-Bohm (AB) and Wess-Zumino (WZ)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

4. Application to Composite Higgs Models

Overview & motivation

Overview

Sigma model on a homogeneous space = a QFT of maps

$$\phi: \Sigma^p \to G/H,$$

with dynamics described by a G-invariant action phase

 $e^{2\pi i S[\phi]}$

For topological terms, we will replace maps with *p*-cycles, and define action phase by integrating (locally-defined) differential forms on cycles. Two types:

- 1. Aharonov-Bohm (AB) terms integrate p-form A, dA = 0
- 2. Wess-Zumino (WZ) terms integrate *p*-forms A_{α} , $dA_{\alpha} = \omega$ is a closed, integral, globally-defined (p + 1)-form

Motivation I: hep-th

Recall Witten's construction of the WZW term:¹

- Assumes Σ^p homeomorphic to S^p
- If π_p(G/H) = 0, any such Σ^p is boundary of a (p + 1)-ball B in G/H
- Can then write topological action as $\int_B \omega$

E.g. in chiral lagrangian, $\pi_4(SU(3)) = 0$

¹Witten, 1983.

Motivation I: hep-th

Two limitations of this approach:

- Want to define WZW on worldvolumes of arbitrary topology (not just S^p):
 - $S^{p-1} \times S^1$: chiral lagrangian in the background of a skyrmion
 - ► *T^p*: periodic BCs *e.g.* in condensed matter

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In cosmology - what is topology of Universe?

Easy resolution: switch from homotopy to homology.

Motivation I: hep-th

Two limitations of this approach:

- 1. Want to define WZW on worldvolumes of arbitrary topology Easy resolution: switch from homotopy to homology
- 2. Want to define WZW on *all* maps/cycles (not just those homotopic to id). *E.g.*:
 - QM on Tⁿ (non-trivial 1-cycles)
 - ► Composite Higgs where $H_4(G/H) \neq 0$, e.g. G/H = SO(5)/SO(4), SO(6)/SO(4) (non-trivial 4-cycles)

Resolution: integrate locally-defined forms. But G-invariance will be more subtle...

Composite Higgs solutions to EW hierarchy problem: H as pNGB of symmetry breaking $G \rightarrow H \supset SU(2)_L \times SU(2)_R$ in some strong sector

naturally light, c.f. pions of low-energy QCD

CH lives on compact space G/H - generic possibility of topological terms

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation II: hep-ph

Topological terms give insight into the UV completion of IR sigma model, by anomaly matching.

Example: chiral lagrangian

Gauged WZ term gives LO contribution to $\pi \rightarrow \gamma \gamma$, and $n_{WZ} = N_c$ in underlying $SU(N_c)$ gauge theory by anomaly matching - *measure* $N_c = 3$ in QCD!

They can also affect the IR pheno. *c.f.* WZW term in chiral lagrangian gives leading contribution to $KK \rightarrow \pi\pi\pi$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

And lots more ...

- p = 1, Landau levels on G/H
- p = 2, strings/ CFTs
- ▶ p ≥ 3, Goldstone bosons everywhere...
 - 1. particle physics (pions, CH)
 - 2. condensed matter (fluids, superfluids)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. cosmology (galileons)

Formalism: why singular homology?

<□ > < @ > < E > < E > E のQ @

Defining topological terms

Assume Σ^{ρ} smooth, connected, orientable. Equip Σ^{ρ} with an orientation \rightarrow can integrate differential forms

'Topological terms' require no further structure on Σ^{ρ} (no metric), and will be invariant under \mathcal{O} , group of orientation-preserving diffeos of Σ^{ρ}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Why chains/ cycles?

We will *not* integrate forms on *manifold* Σ^{p} , but on *chains/ cycles*. Why?

Want to make frequent use of de Rham's theorems:

A *p*-form has vanishing integral over every

$$\begin{cases} p\text{-chain} \\ p\text{-cycle} \\ p\text{-boundary} \end{cases} \text{ iff. it } \begin{cases} \text{vanishes.} \\ \text{is exact.} \\ \text{is closed.} \end{cases}$$
(1)

Requires integration on chains/ cycles

From maps to cycles

One final assumption about worldvolume: Σ^{p} is *closed*. Justification:

In p = 1 (QM), only *relative* paths matter

< ∃→

э

In QFT, finite action requires fields die off "at infinity"

From maps to cycles

Upshot of these assumptions is that

$$H_p(\Sigma^p,\mathbb{Z})=\mathbb{Z},$$

generated by the 'fundamental class' $[\Sigma^{p}]$ (a *p*-cycle). Invariant under \mathcal{O} .

Push-forward any cycle in $[\Sigma^{\rho}]$ using ϕ to define a cycle z in G/H

Integrate *p*-form on G/H on *z* to obtain an action. Well-defined on $[\Sigma^p]$, and therefore \mathcal{O} -invariant

We shall assume action phase defined on all p-cycles in G/H (want to use de Rham's theorems)

We shall allow the *p*-forms on G/H that we integrate to be only locally-defined

・ロト・日本・モト・モート ヨー うへで

The target space G/H

${\cal G}$ is a connected Lie group, otherwise arbitrary, and ${\cal H}$ is a Lie subgroup of ${\cal G}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The classification: AB and WZ terms

<□ > < @ > < E > < E > E のQ @

AB terms

Integrate closed *p*-forms *A* on *p*-cycle *z*:

$$S[z] = \int_{z} A \tag{2}$$

- \blacktriangleright Locally a total derivative in lagrangian \rightarrow doesn't affect classical EOMs
- doesn't affect perturbation theory
- only non-zero if there are non-trivial cycles in G/H, i.e. H_p(G/H, ℤ) ≠ 0
- Only depends on de Rham cohomology class of A

Example: QM on circle

- $S[z] = \int_z A = \int_z \frac{b}{2\pi} d\theta = bW[\phi], W \in \mathbb{Z}$ is winding number
- $e^{2\pi i bW}$ is Aharonov-Bohm phase acquired by wavefunction

► $e^{2\pi i bW}$ invariant (on *all* cycles) upon $b \to b + n$. Hence quotient by $b \in \mathbb{Z} \implies b \in \mathbb{R}/\mathbb{Z} \simeq U(1)$

Classifying AB terms

Automatically G-invariant:

$$\delta_X S[z] = \int_z L_X A = \int_z d\iota_X A = \int_{\partial z} \iota_X A = \int_0 \iota_X A = 0, \quad (3)$$

・ロト・日本・モト・モート ヨー うへで

where L_X is Lie derivative, and X any vector field on G/H.

Classifying AB terms

Q: Are de Rham classes in 'one-to-one' inequivalent action phases? A: No.

If $\int_{z} (A - B) \in \mathbb{Z}$ for any *p*-cycle *z*, then $\exp(2\pi i \int_{z} A)$ and $\exp(2\pi i \int_{z} B)$ will agree on all *p*-cycles (*c.f.* QM on S^{1})

Thus space of physically inequivalent AB terms is thus

$$H^{p}_{dR}(G/H,\mathbb{R})/H^{p}(G/H,\mathbb{Z})_{\mathbb{R}},$$
(4)

Another example: 2-d $\mathbb{C}P^N$ model

 $H^2_{dR}(\mathbb{C}P^N,\mathbb{R})=\mathbb{R}$, generated by Kähler form $A=rac{i}{2}dz^i\wedge dar{z}^i$

In large N limit, theory is dual to QED in 2-d, with AB term \rightarrow theta term 2

Integrate *p*-forms $\{A_{\alpha}\}$ which are not closed, and possibly only locally-defined on open sets $\{U_{\alpha}\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

WZ terms

... but even if A_{α} only locally-defined, $\omega = dA_{\alpha}$ must be globally-defined since appears directly in classical EOMs

If $z = \partial b$, can define action \dot{a} la Witten $S[z] = \int_{b} \omega$

G-invariance implies

$$\delta_X S[z] = \int_b L_X \omega = 0 \quad \forall b \in C_{p+1} \implies L_X \omega = 0$$

But if $z \neq \partial b$ for any b, then must integrate local forms directly, and *G*-invariance obscured. Formulate using Čech cohomology,³ which is about piecing together local information

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

WZ terms: Čech cohomology basics

Choose a good cover $\mathcal{U} = \{U_{\alpha}\}$ on G/H, *i.e.* such that all finite intersections $U_{\alpha_0} \cap U_{\alpha_1} \cap \cdots \cap U_{\alpha_p} := U_{\alpha_0\alpha_1...\alpha_p}$ are contractible.⁴

⁴Bott & Tu, 1982

WZ terms: Čech cohomology basics

Define a Čech *p*-cochain on \mathcal{U} with values in \mathcal{F} , $\omega \in \check{C}^p(\mathcal{U}, \mathcal{F})$, by the set of values $\{\omega_{\alpha_0\alpha_1...\alpha_p} \in \mathcal{F}(U_{\alpha_0\alpha_1...\alpha_p})\}$

Define a Čech coboundary operator $\delta_p : \check{C}^p(\mathcal{U}, \mathcal{F}) \to \check{C}^{p+1}(\mathcal{U}, \mathcal{F})$ by its action on $\omega_{\alpha_0\alpha_1...\alpha_p}$:

$$(\delta\omega)_{\alpha_0\alpha_1\dots\alpha_{p+1}} = \sum_{i=0}^{p+1} (-1)^i \omega_{\alpha_0\dots\hat{\alpha}_i\dots\alpha_{p+1}},\tag{5}$$

s.t. $\delta_{p} \circ \delta_{p-1} = 0$

Define Čech cohomology groups in usual way, $\check{H}(G/H, \mathcal{F}) = \ker \delta_p / \operatorname{im} \delta_{p-1}.$

WZ terms: locally-defined forms

Choose a globally-defined, closed, (p+1)-form ω on G/H. Defines an element of $\check{C}^0(\mathcal{U}, \Lambda^{p+1})$ by restriction: $\omega_{\alpha} := \omega|_{\alpha}$.

Using Poincaré lemma, may construct an element $\{A^p_{\alpha}\} \in \check{C}^0(\mathcal{U}, \Lambda^p)$ via

$$dA^{p}_{\alpha} = \omega_{\alpha}, \text{ on } U_{\alpha}.$$
 (6)

 ω globally-defined $\implies d(A^p_{\alpha} - A^p_{\beta}) = 0$ on $U_{\alpha\beta}$. Using Poincaré lemma, may construct an element $\{A^{p-1}_{\alpha\beta}\} \in \check{C}^1(\mathcal{U}, \Lambda^{p-1})$ via

$$A^{p}_{\alpha} - A^{p}_{\beta} = dA^{p-1}_{\alpha\beta} \quad \text{on } U_{\alpha\beta} \iff \delta \left\{ A^{p}_{\alpha} \right\} = \left\{ dA^{p-1}_{\alpha\beta} \right\}$$
(7)

$$dA^p_{lpha}=\omega_{lpha}, \qquad A^p_{lpha}-A^p_{eta}=dA^{p-1}_{lphaeta}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

To integrate *p*-forms $\{A^p_\alpha\}$, require chains contained within $\{U_\alpha\}$ ('U-small chains')

Apply the subdivision operator, $^5~{\rm Sd},$ as many times, n say, as is necessary

 $z\mapsto \mathrm{Sd}^n z=\sum_lpha c_{p,lpha}$, where $\mathrm{Im}\ c_{p,lpha}\subset U_lpha$

くしゃ (中)・(中)・(中)・(日)

Let's try to define an action phase with these objects

First attempt:

$$S[z] = \sum_{\alpha} \int_{c_{p,\alpha}} A^p_{\alpha}, \quad \text{where} \quad \mathrm{Sd}^n z = \sum_{\alpha} c_{p,\alpha}$$
 ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

No. Ambiguous whenever a *p*-simplex σ is contained in intersection of two open sets, say $U_{\alpha\beta}$.

Fix: integrate (p-1)-form $A_{\alpha\beta}^{p-1}$ over $c_{(p-1),\alpha\beta}$, shared boundary of $c_{p,\alpha}$ and $c_{p,\beta}$

$$S[z] = \sum_{\alpha} \int_{c_{p,\alpha}} A^{p}_{\alpha} - \sum_{\alpha\beta} \int_{c_{(p-1),\alpha\beta}} A^{p-1}_{\alpha\beta}$$

Ambiguity vanishes because $A^{p}_{\alpha} - A^{p}_{\beta} - dA^{p-1}_{\alpha\beta} = 0$

But we are not done!

Ambiguity over which of the $\{A_{\alpha\beta}^{p-1}\}$ to integrate if a simplex lies in a *triple* intersection!

To remove all ambiguities, we need a whole tower of locally-defined differential forms in degree $p, p - 1, \ldots, p - q, \ldots, 0$ defined on $1, 2, \ldots, q + 1, \ldots, p + 2$ -fold intersections.
The Čech-de Rham staircase...

We need all these pieces:

$$\begin{array}{ccccccccc} \Lambda^{p+2} & 0 & & \\ \Lambda^{p+1} & \omega & \{\omega_{\alpha}\} & 0 & & \\ \Lambda^{p} & & \{A^{p}_{\alpha}\} & \delta\{A^{p}_{\alpha}\} = \{dA^{p-1}_{\alpha\beta}\} & & \\ \Lambda^{p-1} & \vdots & \vdots & & \{A^{p-1}_{\alpha\beta}\} & & \\ \vdots & \vdots & \vdots & & \\ \Lambda^{1} & & & \{A^{1}_{\alpha_{0}\dots\alpha_{p-1}}\} & \delta\{A^{1}_{\alpha_{0}\dots\alpha_{p-1}}\} & 0 & & \\ \Lambda^{0} & & & & & \\ \Lambda^{0} & & \\ \Lambda^{0$$

Čech cohomology "consistency relations" then guarantees (almost) all the ambiguities vanish

The action for a WZ term

$$S[z] = \sum_{\alpha} \int_{c_{p,\alpha}} A^{p}_{\alpha} - \sum_{\alpha\beta} \int_{c_{(p-1),\alpha\beta}} A^{p-1}_{\alpha\beta} + \dots + \\ + (-)^{p} \sum_{\alpha_{0} \dots \alpha_{p+1}} A^{0}_{\alpha_{0} \dots \alpha_{p}}(c_{0,\alpha_{0} \dots \alpha_{p}})$$

What about the ambiguity in 0-forms, on (p + 2)-fold intersections? Cannot be removed using forms in one lower degree...

This 0-form ambiguity can be written

$$S'-S=K_{\alpha_0\ldots\alpha_{p+1}},$$

where $K_{\alpha_0...\alpha_{p+1}}$ is an element of the Čech (p+1)-cochain $\{K\}:=\delta\{A^0\}$

The quantization condition

Recall from our staircase diagram that $\{K_{\alpha_0...\alpha_{p+1}}\}$ is both *d*- and δ -closed:

$$\begin{array}{c|cccc} \Lambda^{p+2} & 0 & \\ \Lambda^{p+1} & \omega & \{\omega_{\alpha}\} & 0 & \\ \Lambda^{p} & \{A^{p}_{\alpha}\} & \delta\{A^{p}_{\alpha}\} = \{dA^{p-1}_{\alpha\beta}\} & \\ \Lambda^{p-1} & \vdots & \vdots & \\ \vdots & \vdots & \vdots & \\ \Lambda^{1} & & \{A^{1}_{\alpha_{0}\dots\alpha_{p-1}}\} & \delta\{A^{1}_{\alpha_{0}\dots\alpha_{p-1}}\} & \\ \Lambda^{0} & & & & \\ \hline A^{0} & & & & \\ \hline A^{0} & & & & \\ \hline A^{0} & & & & \\ \Lambda^{0} & & & & \\ \hline A^{0} & & \\ \hline A^{0}$$

d-closure means the 0-forms $K_{\alpha_0...\alpha_{p+1}}$ are actually *constants*.

WZ action phase $e^{2\pi i S_{WZ}[z]}$ will be well-defined iff those constants are integers.

The quantization condition

 δ -closure means $\{K_{\alpha_0...\alpha_{p+1}}\}$ defines an integral cohomology class. Going "back up the staircase" tells us:

$$[\omega] \in H^{p+1}(G/H,\mathbb{Z})$$

イロト イポト イヨト イヨト

э

Some comments:

- If ω is in a trivial cohomology class, then coefficient of WZ term not quantized. E.g. p = 1 Landau levels on ℝ², ω = Bdx ∧ dy, B ∈ ℝ
- ► Can show that the action phase defined above reduces to $e^{2\pi i \int_b \omega}$ when evaluated on a boundary $z = \partial b$
- Can show that the action phase defined above is well-defined on [Σ^ρ]

The Manton condition for *G*-invariance of WZ terms

Defined using local forms, *G*-invariance of action phase is obscured - turns out it is *not* implied by *G*-invariance of ω !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: QM on the torus

Homogeneous B-field defined by $U(1) \times U(1)$ -invariant 2-form $F = \frac{B}{4\pi^2} \ d\theta_1 \wedge d\theta_2$

Cannot use Witten trick on non-trivial 1-cycles. Must integrate locally-defined forms.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example: QM on the torus

E.g. on *z*, can integrate
$$A = -rac{B}{4\pi^2} heta_2 \ d heta_1$$

Action phase $e^{2\pi i S[z]} = e^{-iB\theta_2}$ not U(1)-invariant: only invariant for discrete shifts⁶

$$U(1) imes U(1)
ightarrow \mathbb{Z}_N imes \mathbb{Z}_N$$

⁶Manton, 1985

Now let's generalize this to any WZ term.

Condition for *G*-invariance: p = 1

$$S[z] = \int_{c_{1,\alpha}} A^1_{\alpha} - A^0_{\alpha\beta}(c_{0,\alpha\beta}) + \int_{c_{1,\beta}} A^1_{\beta} - A^0_{\beta\gamma}(c_{0,\beta\gamma}) + \int_{c_{1,\gamma}} A^1_{\gamma} - A^0_{\gamma\alpha}(c_{0,\gamma\alpha})$$

Condition for *G*-invariance: p = 1

$$\mathcal{S}[z] = \int_{c_{1,lpha}} A^1_{lpha} - A^0_{lphaeta}(c_{0,lphaeta}) + \int_{c_{1,eta}} A^1_{eta} - A^0_{eta\gamma}(c_{0,eta\gamma}) + \int_{c_{1,\gamma}} A^1_{\gamma} - A^0_{\gammalpha}(c_{0,\gammalpha})$$

Compute variation under infinitesimal *G*-transformation generated by $X \in \mathfrak{g}$ using

$$L_X A^1_{\alpha} = \iota_X \omega_{\alpha} + d\iota_X A^1_{\alpha}, \text{ and } L_X A^0_{\alpha\beta} = \iota_X dA^0_{\alpha\beta} = \iota_X (A^1_{\alpha} - A^1_{\beta})$$

Stokes' theorem \implies

$$\delta_X S[z] = \int_{c_{1,\alpha}} \iota_X \omega_\alpha + \int_{c_{1,\beta}} \iota_X \omega_\beta + \int_{c_{1,\gamma}} \iota_X \omega_\gamma = \int_z \iota_X \omega$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generalizes to any cycle, in general *p*.

$$\delta_X S[z] = \sum \int_{\alpha} L_X A^p_{\alpha} - \sum \int_{\alpha\beta} L_X A^{p-1}_{\alpha\beta} + \cdots = \int_z \iota_X \omega$$

Demand $\delta_X S[z] = 0$ on all cycles $\stackrel{dR}{\Rightarrow}$

$$\iota_X \omega = df_X, \quad f_X \in \Lambda^{p-1}(G/H)$$
(9)

= the 'Manton condition'. Nec and suff when G connected.

A broad generalization of the 'anomaly' Manton observed for QM on T^2 to any homogeneous space sigma model in QFT

Noether currents for G-invariance

Noether currents = the (p-1)-forms f_X that appear in the Manton condition $\iota_X \omega = df_X$

If the Manton condition fails, the f_X , and hence the Noether currents, are not globally-defined

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary of classification

1. AB terms, classified by

$$H^p_{dR}(G/H,\mathbb{R})/H^p(G/H,\mathbb{Z})_{\mathbb{R}}$$

if neglecting torsion

2. WZ terms, classified by

$$\{\omega \in Z^{p+1}(G/H, \mathbb{Z}) \mid \iota_X(\omega) = df_X \,\,\forall X \in \mathfrak{g}\}$$

(Evidence for this classification from differential cohomology of G/H - see backup slides)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Applications: the Composite Higgs

<□ > < @ > < E > < E > E のQ @

Require pNGBs \supset (2, 2) under $SU(2)_L \times SU(2)_R$. Leaves many viable cosets.

G	Н	N _G	Reps	AB terms	WZ terms
<i>SO</i> (5)	<i>SO</i> (4)	4	(2,2)	U(1)	-
<i>SO</i> (6)	SO(5)	5	(2,2) + (1,1)	-	\mathbb{Z}
SO(5) imes U(1)	SO(4)	5	(2,2) + (1,1)	U(1)	-
<i>SO</i> (6)	$SO(4) \times SO(2)$	8	2 × (2 , 2)	U(1) imes U(1)	-
<i>SO</i> (6)	<i>SO</i> (4)	9	$2 \times (2, 2) + (1, 1)$	U(1)	$Z \times \mathbb{R}^4$
SU(5)	SO(5)	14	$({\bf 3},{\bf 3})+({\bf 2},{\bf 2})+({\bf 1},{\bf 1})$	-	\mathbb{Z}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The $SO(5)/SO(4) \simeq S^4 \text{ Model}^7$

AB term $S[z]=rac{ heta}{V_{S^4}}\int_z d^4H= heta W, \quad heta\in U(1)$

Physical effects (if any) non-perturbative, expect become important in UV (from instanton argument)

⁷Agashe, Contino, Pomarol, 2005

The $SO(6)/SO(5) \simeq S^5 \text{ model}^8$

WZ term, can write using Witten construction since $H_4(S^5) = 0$:

$$S[z=\partial B]=rac{n_{WZ}}{V_5}\int_B d\eta\wedge d^4H,\quad n\in\mathbb{Z}$$

Physics? Dimension-9, but gauging $SU(2)_L$ produces dimension-5 operators.

⁸Gripaios, Pomarol, Riva, Serra, 2009

Probing the microscopic theory

Has been suggested the SO(6)/SO(5) model can arise from an $Sp(2N_c)$ gauge theory with 4 fundamental Weyl fermions.⁹ Global symmetry breaking

$$SU(4) \simeq SO(6) \rightarrow Sp(4) \simeq SO(5)$$

Anomaly-matching would then predict

$$n_{WZ}=0$$

So measuring WZ-induced processes probes gauge group of UV completion

⁹Barnard, Gherghetta, Ray, 2014

The $SO(5) imes U(1)/SO(4)\simeq S^4 imes S^1$ model¹⁰

Local coordinates $(h_1, h_2, h_3, h_4, \eta) = (H, \eta)$. WZ term from $SO(5) \times U(1)$ volume form $\omega = d\eta \ d^4H$? Would induce *e.g.* $\eta \rightarrow WWZh$ rare decay

No!

Manton condition violated for generator of U(1):

 $\iota_{\partial_{\eta}}\omega = \operatorname{Vol}_{S^4}$

closed but not exact. Same physics as QM on T^2 .

¹⁰Gripaios, You, Nardecchia, 2015

The $SO(5) imes U(1)/SO(4) \simeq S^4 imes S^1$ model

We can see this explicitly.

 $H_4(S^4 imes S^1, \mathbb{Z}) = \mathbb{Z}$; need to use local forms E.g.

$$S[z] = \int_z \eta_0 \ d^4 H = \eta_0 V_{S^4},$$

(日) (日) (日) (日) (日) (日) (日) (日)

not U(1)-invariant! U(1) is broken to discrete subgroup

The SO(6)/SO(4) model

As a CHM:

features 9 pNGBs: 2 HDs, 1 singlet

$$\phi_{a}\hat{T}^{a} = \begin{pmatrix} \mathbf{0}_{4\times4} & H_{A}^{T} & H_{B}^{T} \\ -H_{A} & \mathbf{0} & \eta \\ -H_{B} & -\eta & \mathbf{0} \end{pmatrix}$$

 SO(6)/SO(4) ≃ SU(4)/SO(4), imagine UV completion as an SO(N_c) gauge theory w 4 fund Weyl fermions

The SO(6)/SO(4) model

Topologically, the Stiefel manifold SO(6)/SO(4) is an S^4 bundle over S^5 (unit tangent bundle of S^5)

Cannot use Witten construction because

$$H_4(E,\mathbb{Z}) = \mathbb{Z}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Computing space of WZ terms

Need to compute space of SO(6)-invariant, integral, closed 5-forms on SO(6)/SO(4), that satisfy Manton condition

Lemma: Manton condition guaranteed when G is semi-simple

Proof: Semi-simple means $[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$, i.e. for any $X \in \mathfrak{g}$, X = [Y, Z]. Using $[L_Y, \iota_Z]\alpha = \iota_{[Y,Z]}\alpha$,

$$\iota_X \omega = \iota_{[Y,Z]} \omega = d(\iota_Y \iota_Z \omega), \tag{10}$$

which is Manton condition $\forall X \in \mathfrak{g}$

SO(6) is semi-simple

Computing space of WZ terms

Need to compute space of SO(6)-invariant, integral, closed 5-forms on SO(6)/SO(4), that satisfy Manton condition

1. SO(6) semi-simple, $L_X \omega = 0 \implies$ Manton condition. Hence reduces to space of integral cocycles in relative Chevalley-Eilenberg cohomology

くしゃ (雪) (雪) (雪) (雪) (雪) (

2. G = SO(6) is compact, connected, and H = SO(4) is connected. Hence reduces to space of integral cocycles in relative Lie algebra cohomology¹¹

So the computation reduces to algebra!

¹¹Chevalley, Eilenberg, 1948

Computing space of WZ terms

Fortunately, there is a package in Maple.

We find the following basis for WZ terms:

 $\{ d^{4}H_{B}d\eta, \ d^{4}H_{A}d\eta, \ \epsilon_{ijkl}dh_{A}^{i}dh_{B}^{j}dh_{B}^{k}dh_{B}^{l}d\eta, \\ \epsilon_{ijkl}dh_{A}^{i}dh_{A}^{j}dh_{B}^{k}dh_{B}^{l}d\eta, \ \epsilon_{ijkl}dh_{A}^{i}dh_{A}^{j}dh_{A}^{k}dh_{B}^{l}d\eta \},$

Space of WZ terms is thus $\mathbb{Z}\times\mathbb{R}^4$

Space of AB terms turns out to be U(1)

Summary

 Classified topological terms in *G*/*H* sigma model starting from singular homology

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- AB terms and WZ terms
- Manton condition for G-invariance of WZ terms
- Composite Higgs examples

Outlook

hep-th

Differential characters.

Beyond differential characters. e.g. in theory $\phi: \Sigma^4 \simeq S^4 \rightarrow SU(2) \simeq S^3$, topological term because $\pi_4(S^3) = \mathbb{Z}_2 \rightarrow$ fermionic solitons

hep-ph

Explore Composite Higgs pheno. Requires we gauge the topological terms.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thanks!

Backup: Differential Characters etc

<□ > < @ > < E > < E > E のQ @

The geometry of WZ terms

p = 1

The Čech data define a principal U(1) bundle over G/H

- $\{A^1_{\alpha}\}$ is connection/ 'background gauge field'
- ω is curvature/ 'field strength'
- Quantization condition corresponds to integrality of c₁
- $S_{WZ}[z]$ is holonomy for z

p = 2

The Čech data define a principal Hitchin gerbe over G/H

- $\{A_{\alpha}^2\}$ is 2-form connection
- ω is 3-form curvature
- $S_{WZ}[z]$ is "higher holonomy" for z

Evidence for classification: differential cohomology

A topological term (as we have defined it) is a differential character. 12

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

¹²Cheeger-Simons, 1985.

Evidence for classification: differential cohomology

Definition: A differential character f is a homomorphism from smooth singular cycles to U(1),

$$f: Z_p(G/H, \mathbb{Z}) \to U(1),$$

such that for every (p+1)-chain c,

$$f(z=\partial c)=e^{2\pi i\int_c\omega},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where (p + 1)-form ω is *curvature* of the character f (uniquely determined)

Evidence for classification: differential cohomology

Space of differential characters forms an abelian group,

 $\hat{H}^{p}(G/H,\mathbb{Z}) := \{ f \in \operatorname{Hom}(Z_{p}(G/H,\mathbb{Z}), U(1)) \mid f(\partial c) = e^{2\pi i \int_{c} \omega} \},$ (11)
which sits inside an exact sequence:

(12)

 $0 \rightarrow H^p(G/H, U(1)) \rightarrow \hat{H}^p(G/H, \mathbb{Z}) \rightarrow \Omega_0^{p+1} \rightarrow 0.$

if no torsion, sequence splits, and group of characters is direct product of two groups: AB and WZ (need to figure out how to impose G-invariance).
Low-degree differential cohomology groups

- $\hat{H}^0(M,\mathbb{Z}) = C^{\infty}(M,U(1))$
- $\hat{H}^1(M,\mathbb{Z})$ is space of U(1) bundles over M with connection

Ĥ²(M,ℤ) is space of Hitchen gerbes over M with connection¹³

Classifying AB terms II: locally-defined p-form

If allow A to be only locally-defined on open sets, turns out space of AB terms classified by

 $H^p(G/H, U(1)),$

pth singular cohomology of G/H valued in U(1). Includes torsion...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <