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Outline of talk

1. Overview & motivation

2. Why singular homology?

3. Classification in two parts: Aharonov-Bohm (AB) and
Wess-Zumino (WZ)

4. Application to Composite Higgs Models



Overview & motivation



Overview

Sigma model on a homogeneous space = a QFT of maps

φ : Σp → G/H,

with dynamics described by a G -invariant action phase

e2πiS[φ]

For topological terms, we will replace maps with p-cycles, and
define action phase by integrating (locally-defined) differential
forms on cycles. Two types:

1. Aharonov-Bohm (AB) terms - integrate p-form A, dA = 0

2. Wess-Zumino (WZ) terms - integrate p-forms Aα, dAα = ω is
a closed, integral, globally-defined (p + 1)-form



Motivation I: hep-th

Recall Witten’s construction of the WZW term:1

I Assumes Σp homeomorphic to Sp

I If πp(G/H) = 0, any such Σp is boundary of a (p + 1)-ball B
in G/H

I Can then write topological action as
∫
B ω

E.g. in chiral lagrangian, π4(SU(3)) = 0

1Witten, 1983.



Motivation I: hep-th

Two limitations of this approach:

1. Want to define WZW on worldvolumes of arbitrary topology
(not just Sp):

I Sp−1 × S1: chiral lagrangian in the background of a skyrmion
I T p: periodic BCs e.g. in condensed matter

I In cosmology - what is topology of Universe?

Easy resolution: switch from homotopy to homology.



Motivation I: hep-th

Two limitations of this approach:

1. Want to define WZW on worldvolumes of arbitrary topology
Easy resolution: switch from homotopy to homology

2. Want to define WZW on all maps/cycles (not just those
homotopic to id). E.g.:

I QM on T n (non-trivial 1-cycles)
I Composite Higgs where H4(G/H) 6= 0, e.g.

G/H = SO(5)/SO(4), SO(6)/SO(4) (non-trivial 4-cycles)

Resolution: integrate locally-defined forms. But G -invariance
will be more subtle...



Motivation II: hep-ph

Composite Higgs solutions to EW hierarchy problem:
H as pNGB of symmetry breaking G → H ⊃ SU(2)L × SU(2)R in
some strong sector

naturally light, c.f. pions of low-energy QCD

CH lives on compact space G/H - generic possibility of topological
terms



Motivation II: hep-ph

Topological terms give insight into the UV completion of IR sigma
model, by anomaly matching.

Example: chiral lagrangian

Gauged WZ term gives LO contribution to π → γγ, and
nWZ = Nc in underlying SU(Nc) gauge theory by anomaly
matching - measure Nc = 3 in QCD!

They can also affect the IR pheno. c.f. WZW term in chiral
lagrangian gives leading contribution to KK → πππ



And lots more...

I p = 1, Landau levels on G/H

I p = 2, strings/ CFTs
I p ≥ 3, Goldstone bosons - everywhere...

1. particle physics (pions, CH)
2. condensed matter (fluids, superfluids)
3. cosmology (galileons)



Formalism: why singular homology?



Defining topological terms

Assume Σp smooth, connected, orientable. Equip Σp with an
orientation → can integrate differential forms

‘Topological terms’ require no further structure on Σp (no metric),
and will be invariant under O, group of orientation-preserving
diffeos of Σp



Why chains/ cycles?

We will not integrate forms on manifold Σp, but on chains/ cycles.
Why?

Want to make frequent use of de Rham’s theorems:

A p-form has vanishing integral over every
p-chain

p-cycle

p-boundary

 iff. it


vanishes.

is exact.

is closed.

 (1)

Requires integration on chains/ cycles



From maps to cycles
One final assumption about worldvolume: Σp is closed.
Justification:

In p = 1 (QM), only relative paths matter

In QFT, finite action requires fields die off “at infinity”



From maps to cycles

Upshot of these assumptions is that

Hp(Σp,Z) = Z,

generated by the ‘fundamental class’ [Σp] (a p-cycle). Invariant
under O.

Push-forward any cycle in [Σp] using φ to define a cycle z in G/H

Integrate p-form on G/H on z to obtain an action. Well-defined
on [Σp], and therefore O-invariant



We shall assume action phase defined on all p-cycles in G/H (want
to use de Rham’s theorems)



We shall allow the p-forms on G/H that we integrate to be only
locally-defined



The target space G/H

G is a connected Lie group, otherwise arbitrary, and H is a Lie
subgroup of G



The classification: AB and WZ terms



AB terms

Integrate closed p-forms A on p-cycle z :

S [z ] =

∫
z
A (2)

I Locally a total derivative in lagrangian → doesn’t affect
classical EOMs

I doesn’t affect perturbation theory

I only non-zero if there are non-trivial cycles in G/H, i.e.
Hp(G/H,Z) 6= 0

I Only depends on de Rham cohomology class of A



Example: QM on circle

I S [z ] =
∫
z A =

∫
z

b
2πdθ = bW [φ], W ∈ Z is winding number

I e2πibW is Aharonov-Bohm phase acquired by wavefunction

I e2πibW invariant (on all cycles) upon b → b + n. Hence
quotient by b ∈ Z =⇒ b ∈ R/Z ' U(1)



Classifying AB terms

Automatically G -invariant:

δXS [z ] =

∫
z
LXA =

∫
z
dιXA =

∫
∂z
ιXA =

∫
0
ιXA = 0, (3)

where LX is Lie derivative, and X any vector field on G/H.



Classifying AB terms

Q: Are de Rham classes in ‘one-to-one’ inequivalent action phases?
A: No.

If
∫
z(A− B) ∈ Z for any p-cycle z , then exp(2πi

∫
z A) and

exp(2πi
∫
z B) will agree on all p-cycles (c.f. QM on S1)

Thus space of physically inequivalent AB terms is thus

Hp
dR(G/H,R)/Hp(G/H,Z)R, (4)



Another example: 2-d CPN model

H2
dR(CPN ,R) = R, generated by Kähler form A = i

2dz
i ∧ dz̄ i

In large N limit, theory is dual to QED in 2-d, with AB term →
theta term2

2Schwinger, 1962



WZ terms

Integrate p-forms {Aα} which are not closed, and possibly only
locally-defined on open sets {Uα}



WZ terms

... but even if Aα only locally-defined, ω = dAα must be
globally-defined since appears directly in classical EOMs

If z = ∂b, can define action á la Witten S [z ] =
∫
b ω

G -invariance implies

δXS [z ] =

∫
b
LXω = 0 ∀b ∈ Cp+1 =⇒ LXω = 0



But if z 6= ∂b for any b, then must integrate local forms directly,
and G -invariance obscured. Formulate using Čech cohomology,3

which is about piecing together local information

3Alvarez, 1985



WZ terms: Čech cohomology basics

Choose a good cover U = {Uα} on G/H, i.e. such that all finite
intersections Uα0 ∩ Uα1 ∩ · · · ∩ Uαp := Uα0α1...αp are contractible.4

4Bott & Tu, 1982



WZ terms: Čech cohomology basics

Define a Čech p-cochain on U with values in F , ω ∈ Čp(U ,F), by
the set of values {ωα0α1...αp ∈ F(Uα0α1...αp)}

Define a Čech coboundary operator δp : Čp(U ,F)→ Čp+1(U ,F)
by its action on ωα0α1...αp :

(δω)α0α1...αp+1 =

p+1∑
i=0

(−1)iωα0...α̂i ...αp+1 , (5)

s.t. δp ◦ δp−1 = 0

Define Čech cohomology groups in usual way,
Ȟ(G/H,F) = ker δp/im δp−1.



WZ terms: locally-defined forms

Choose a globally-defined, closed, (p + 1)-form ω on G/H. Defines
an element of Č 0(U ,Λp+1) by restriction: ωα := ω|α.

Using Poincaré lemma, may construct an element
{Ap

α} ∈ Č 0(U ,Λp) via

dAp
α = ωα, on Uα. (6)

ω globally-defined =⇒ d(Ap
α − Ap

β) = 0 on Uαβ. Using Poincaré

lemma, may construct an element {Ap−1
αβ } ∈ Č 1(U ,Λp−1) via

Ap
α − Ap

β = dAp−1
αβ on Uαβ ⇐⇒ δ {Ap

α} =
{
dAp−1

αβ

}
(7)



dAp
α = ωα, Ap

α − Ap
β = dAp−1

αβ



WZ terms: U -small chains

To integrate p-forms {Ap
α}, require chains contained within {Uα}

(‘U-small chains’)

Apply the subdivision operator,5 Sd, as many times, n say, as is
necessary

z 7→ Sdnz =
∑

α cp,α, where Im cp,α ⊂ Uα

5Vick, 1994





Let’s try to define an action phase with these objects

First attempt:

S [z ] =
∑
α

∫
cp,α

Ap
α, where Sdnz =

∑
α

cp,α ?

No. Ambiguous whenever a p-simplex σ is contained in
intersection of two open sets, say Uαβ.



Fix: integrate (p − 1)-form Ap−1
αβ over c(p−1),αβ, shared boundary

of cp,α and cp,β

S [z ] =
∑
α

∫
cp,α

Ap
α −

∑
αβ

∫
c(p−1),αβ

Ap−1
αβ

Ambiguity vanishes because Ap
α − Ap

β − dAp−1
αβ = 0



But we are not done!

Ambiguity over which of the
{
Ap−1
αβ

}
to integrate if a simplex lies

in a triple intersection!

To remove all ambiguities, we need a whole tower of locally-defined
differential forms in degree p, p − 1, . . . , p − q, . . . , 0 defined on
1, 2, . . . , q + 1, . . . , p + 2 -fold intersections.



The Čech-de Rham staircase...

We need all these pieces:

Λp+2 0
Λp+1 ω {ωα} 0

Λp {Ap
α} δ{Ap

α} = {dAp−1
αβ }

Λp−1 ...
... {Ap−1

αβ }
...

...
...

...
Λ1 {A1

α0...αp−1
} δ{A1

α0...αp−1
} 0

Λ0 . . . {A0
α0...αp

} δ{A0
α0...αp

} 0

d ↑ . . . {Kα0...αp+1}
δ → Č 0 Č 1 . . . Čp Čp+1 Čp+2

. (8)

Čech cohomology “consistency relations” then guarantees (almost)
all the ambiguities vanish



The action for a WZ term

S [z ] =
∑
α

∫
cp,α

Ap
α −

∑
αβ

∫
c(p−1),αβ

Ap−1
αβ + · · ·+

+(−)p
∑

α0...αp+1

A0
α0...αp

(c0,α0...αp)



The quantization condition

What about the ambiguity in 0-forms, on (p + 2)-fold
intersections? Cannot be removed using forms in one lower
degree...

This 0-form ambiguity can be written

S ′ − S = Kα0...αp+1 ,

where Kα0...αp+1 is an element of the Čech (p + 1)-cochain
{K} := δ{A0}



The quantization condition

Recall from our staircase diagram that {Kα0...αp+1} is both d- and
δ-closed:

d-closure means the 0-forms Kα0...αp+1 are actually constants.

WZ action phase e2πiSWZ [z] will be well-defined iff those constants
are integers.



The quantization condition

δ-closure means {Kα0...αp+1} defines an integral cohomology class.
Going “back up the staircase” tells us:

[ω] ∈ Hp+1(G/H,Z)



Some comments:

I If ω is in a trivial cohomology class, then coefficient of WZ
term not quantized. E.g. p = 1 Landau levels on R2,
ω = Bdx ∧ dy , B ∈ R

I Can show that the action phase defined above reduces to
e2πi

∫
b ω when evaluated on a boundary z = ∂b

I Can show that the action phase defined above is well-defined
on [Σp]



The Manton condition for G -invariance of WZ
terms



Defined using local forms, G -invariance of action phase is obscured
- turns out it is not implied by G -invariance of ω!



Example: QM on the torus

Homogeneous B-field defined by U(1)× U(1)-invariant 2-form
F = B

4π2 dθ1 ∧ dθ2

Cannot use Witten trick on non-trivial 1-cycles. Must integrate
locally-defined forms.



Example: QM on the torus

E.g. on z , can integrate A = − B
4π2 θ2 dθ1

Action phase e2πiS[z] = e−iBθ2 not U(1)-invariant: only invariant
for discrete shifts6

U(1)× U(1)→ ZN × ZN

6Manton, 1985



Now let’s generalize this to any WZ term.



Condition for G -invariance: p = 1

S [z ] =

∫
c1,α

A1
α−A0

αβ(c0,αβ)+

∫
c1,β

A1
β−A0

βγ(c0,βγ)+

∫
c1,γ

A1
γ−A0

γα(c0,γα)



Condition for G -invariance: p = 1

S [z ] =

∫
c1,α

A1
α−A0

αβ(c0,αβ)+

∫
c1,β

A1
β−A0

βγ(c0,βγ)+

∫
c1,γ

A1
γ−A0

γα(c0,γα)

Compute variation under infinitesimal G -transformation generated
by X ∈ g using

LXA
1
α = ιXωα + dιXA

1
α, and LXA

0
αβ = ιXdA

0
αβ = ιX (A1

α−A1
β)

Stokes’ theorem =⇒

δXS [z ] =

∫
c1,α

ιXωα +

∫
c1,β

ιXωβ +

∫
c1,γ

ιXωγ =

∫
z
ιXω



Generalizes to any cycle, in general p.

δXS [z ] =
∑∫

α
LXA

p
α −

∑∫
αβ

LXA
p−1
αβ + · · · =

∫
z
ιXω

Demand δXS [z ] = 0 on all cycles
dR
=⇒

ιXω = dfX , fX ∈ Λp−1(G/H) (9)

= the ‘Manton condition’. Nec and suff when G connected.

A broad generalization of the ‘anomaly’ Manton observed for QM
on T 2 to any homogeneous space sigma model in QFT



Noether currents for G -invariance

Noether currents = the (p − 1)-forms fX that appear in the
Manton condition ιXω = dfX

If the Manton condition fails, the fX , and hence the Noether
currents, are not globally-defined



Summary of classification

1. AB terms, classified by

Hp
dR(G/H,R)/Hp(G/H,Z)R

if neglecting torsion

2. WZ terms, classified by

{ω ∈ Zp+1(G/H,Z) | ιX (ω) = dfX ∀X ∈ g}

(Evidence for this classification from differential cohomology of
G/H - see backup slides)



Applications: the Composite Higgs



Example cosets

Require pNGBs ⊃ (2, 2) under SU(2)L × SU(2)R . Leaves many
viable cosets.

G H NG Reps AB terms WZ terms

SO(5) SO(4) 4 (2, 2) U(1) -
SO(6) SO(5) 5 (2, 2) + (1, 1) - Z

SO(5)× U(1) SO(4) 5 (2, 2) + (1, 1) U(1) -
SO(6) SO(4)× SO(2) 8 2× (2, 2) U(1)× U(1) -
SO(6) SO(4) 9 2× (2, 2) + (1, 1) U(1) Z×R4

SU(5) SO(5) 14 (3, 3) + (2, 2) + (1, 1) - Z



The SO(5)/SO(4) ' S4 Model7

AB term

S [z ] =
θ

VS4

∫
z
d4H = θW , θ ∈ U(1)

Physical effects (if any) non-perturbative, expect become
important in UV (from instanton argument)

7Agashe, Contino, Pomarol, 2005



The SO(6)/SO(5) ' S5 model8

WZ term, can write using Witten construction since H4(S5) = 0:

S [z = ∂B] =
nWZ

V5

∫
B
dη ∧ d4H, n ∈ Z

Physics? Dimension-9, but gauging SU(2)L produces dimension-5
operators.

8Gripaios, Pomarol, Riva, Serra, 2009



Probing the microscopic theory

Has been suggested the SO(6)/SO(5) model can arise from an
Sp(2Nc) gauge theory with 4 fundamental Weyl fermions.9 Global
symmetry breaking

SU(4) ' SO(6)→ Sp(4) ' SO(5)

Anomaly-matching would then predict

nWZ = 0

So measuring WZ-induced processes probes gauge group of UV
completion

9Barnard, Gherghetta, Ray, 2014



The SO(5)× U(1)/SO(4) ' S4 × S1 model10

Local coordinates (h1, h2, h3, h4, η) = (H, η). WZ term from
SO(5)× U(1) volume form ω = dη d4H? Would induce e.g.
η →WWZh rare decay

No!

Manton condition violated for generator of U(1):

ι∂ηω = VolS4

closed but not exact. Same physics as QM on T 2.

10Gripaios, You, Nardecchia, 2015



The SO(5)× U(1)/SO(4) ' S4 × S1 model

We can see this explicitly.

H4(S4 × S1,Z) = Z; need to use local forms E.g.

S [z ] =

∫
z
η0 d4H = η0VS4 ,

not U(1)-invariant! U(1) is broken to discrete subgroup



The SO(6)/SO(4) model

As a CHM:

I features 9 pNGBs: 2 HDs, 1 singlet

φaT̂
a =

 04×4 HT
A HT

B

−HA 0 η
−HB −η 0


I SO(6)/SO(4) ' SU(4)/SO(4), imagine UV completion as an

SO(Nc) gauge theory w 4 fund Weyl fermions



The SO(6)/SO(4) model

Topologically, the Stiefel manifold SO(6)/SO(4) is an S4 bundle
over S5 (unit tangent bundle of S5)

Cannot use Witten construction because

H4(E ,Z) = Z



Computing space of WZ terms

Need to compute space of SO(6)-invariant, integral, closed
5-forms on SO(6)/SO(4), that satisfy Manton condition

Lemma: Manton condition guaranteed when G is semi-simple

Proof: Semi-simple means [g, g] = g, i.e. for any X ∈ g,
X = [Y ,Z ]. Using [LY , ιZ ]α = ι[Y ,Z ]α,

ιXω = ι[Y ,Z ]ω = d(ιY ιZω), (10)

which is Manton condition ∀X ∈ g

SO(6) is semi-simple



Computing space of WZ terms

Need to compute space of SO(6)-invariant, integral, closed
5-forms on SO(6)/SO(4), that satisfy Manton condition

1. SO(6) semi-simple, LXω = 0 =⇒ Manton condition. Hence
reduces to space of integral cocycles in relative
Chevalley-Eilenberg cohomology

2. G = SO(6) is compact, connected, and H = SO(4) is
connected. Hence reduces to space of integral cocycles in
relative Lie algebra cohomology11

So the computation reduces to algebra!

11Chevalley, Eilenberg, 1948



Computing space of WZ terms

Fortunately, there is a package in Maple.

We find the following basis for WZ terms:

{d4HBdη, d
4HAdη, εijkldh

i
Adh

j
Bdh

k
Bdh

l
Bdη,

εijkldh
i
Adh

j
Adh

k
Bdh

l
Bdη, εijkldh

i
Adh

j
Adh

k
Adh

l
Bdη},

Space of WZ terms is thus Z× R4

Space of AB terms turns out to be U(1)



Summary

I Classified topological terms in G/H sigma model starting
from singular homology

I AB terms and WZ terms

I Manton condition for G -invariance of WZ terms

I Composite Higgs examples



Outlook

hep-th

Differential characters.

Beyond differential characters. e.g. in theory
φ : Σ4 ' S4 → SU(2) ' S3, topological term because
π4(S3) = Z2 → fermionic solitons

hep-ph

Explore Composite Higgs pheno. Requires we gauge the
topological terms.



Thanks!



Backup: Differential Characters etc



The geometry of WZ terms

p = 1

The Čech data define a principal U(1) bundle over G/H
I {A1

α} is connection/ ‘background gauge field’
I ω is curvature/ ‘field strength’
I Quantization condition corresponds to integrality of c1
I SWZ [z ] is holonomy for z

p = 2

The Čech data define a principal Hitchin gerbe over G/H
I {A2

α} is 2-form connection
I ω is 3-form curvature
I SWZ [z ] is “higher holonomy” for z



Evidence for classification: differential cohomology

A topological term (as we have defined it) is a differential
character.12

12Cheeger-Simons, 1985.



Evidence for classification: differential cohomology

Definition: A differential character f is a homomorphism from
smooth singular cycles to U(1),

f : Zp(G/H,Z)→ U(1),

such that for every (p + 1)-chain c ,

f (z = ∂c) = e2πi
∫
c ω,

where (p + 1)-form ω is curvature of the character f (uniquely
determined)



Evidence for classification: differential cohomology

Space of differential characters forms an abelian group,

Ĥp(G/H,Z) := {f ∈ Hom(Zp(G/H,Z),U(1)) | f (∂c) = e2πi
∫
c ω},
(11)

which sits inside an exact sequence:

0→ Hp(G/H,U(1))→ Ĥp(G/H,Z)→ Ωp+1
0 → 0. (12)

if no torsion, sequence splits, and group of characters is direct
product of two groups: AB and WZ (need to figure out how to
impose G -invariance).



Low-degree differential cohomology groups

I Ĥ0(M,Z) = C∞(M,U(1))

I Ĥ1(M,Z) is space of U(1) bundles over M with connection

I Ĥ2(M,Z) is space of Hitchen gerbes over M with
connection13

13Hitchin, 2001



Classifying AB terms II: locally-defined p-form

If allow A to be only locally-defined on open sets, turns out space
of AB terms classified by

Hp(G/H,U(1)),

pth singular cohomology of G/H valued in U(1). Includes torsion...
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